

Image analysis with CNNs, time series analysis with RNNs

George Chen

(some neural net & deep learning slides are by Phillip Isola)

CMU 95-865 Spring 2018

Mid-Mini Quiz

Mean: 88.1, standard deviation: 16.7

Re-grade requests (HW2 and mid-mini quiz) due on Monday 11:59pm

Image analysis with Convolutional Neural Nets (CNNs, also called convnets)

Slide by Phillip Isola

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

Input image

Take dot product!

								1
С	0	0 0	0 0	0	С)	0	0
С) 0 (0 1	¹ 0	1	1		0	0
C) 0	¹ 0	¹ 0	1	1		1	0
C)	1	1	1	С)	0	0
C)	1	1	1	1		1	0
С)	0	1	1	1		0	0
С)	0	0	0	С		0	0

0		

Input image

Take dot product!

0	0 0	00	00	0	0	0
0	0 0	¹ 1	10	1	0	0
0	¹ 0	¹ 0	¹ 0	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1		

Input image

Take dot product!

0	0	00	00	00	0	0
0	0	1 0	¹ 1	¹ 0	0	0
0	1	¹ 0	¹ 0	¹ 0	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	

Input image

Take dot product!

0	0	0	0	00	00	0
0	0	1	¹ 0	¹ 1	00	0
0	1	1	¹ 0	¹ 0	¹ 0	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	

Input image

Take dot product!

0	0	0	0	0 0	0 0	00
0	0	1	1	1 0	01	00
0	1	1	1	¹ 0	¹ 0	00
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	0

Input image

Take dot product!

0	1	1	1	0
1				

Input image

Take dot product!

0	1	1	1	0
1	1			

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0	
0	0	0	
0	1	0	—
0	0	0	

*

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

Output image

Note: output image is smaller than input image If you want output size to be same as input, pad 0's to input

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	1	1	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

0	0	0	
0	1	0	=
0	0	0	

*

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Note: output image is smaller than input image If you want output size to be same as input, pad 0's to input

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

*

=

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

0	0	0	0	0	0	0	
0	0	1	1	1	0	0	
0	1	1	1	1	1	0	
0	1	1	1	0	0	0	*
0	1	1	1	1	1	0	
0	0	1	1	1	0	0	
0	0	0	0	0	0	0	

= <mark>1</mark> 9	3	5	6	5	3
	5	8	8	6	3
	6	9	8	7	4
	5	8	8	6	3
	3	5	6	5	3

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

-1 -1 2 2 -1 -1

*

-1

2

-1

=

0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

Input image

Very commonly used for:

• Blurring an image

	1/9	1/9	1/9	
*	1/9	1/9	1/9	
	1/9	1/9	1/9	

• Finding edges

	-1	-1	-1	
*	2	2	2	=
	-1	-1	-1	

(this example finds horizontal edges)

and are learned!

activation (e.g., ReLU)

Stack output images into a single "output feature map"

dimensions: height-2, width-2, number of kernels (3 in this case)

Images from: http://aishack.in/tutorials/image-convolution-examples/

width-2,

k

Stack output images into a single "output feature map"

dimensions: height-2, width-2, k

Pooling

• Aggregate local information

 Produces a smaller image (each resulting pixel captures some "global" information)

-1	-1	-1	
2	2	2	=
-1	-1	-1	

	0	1	3	1	0
	1	1	1	3	3
=	0	0	-2	-4	-4
	1	1	1	З	3
	0	1	3	1	0

Input image

	-1	-1	-1	
<	2	2	2	=
	-1	-1	-1	

0	1	3	1	0
1	1	1	З	3
0	0	-2	-4	-4
1	1	1	З	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image

	-1	-1	-1	
<	2	2	2	=
	-1	-1	-1	

0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image

	-1	-1	-1	
<	2	2	2	=
	-1	-1	-1	

0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image

	-1	-1	-1	
<	2	2	2	=
	-1	-1	-1	

0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image

1 3 1

	-1	-1	-1	
:	2	2	2	=
	-1	-1	-1	

0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	З	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image

Output image after ReLU

Input image

0

0

 $\left(\right)$

0

0

()

0

What numbers were involved in computing this 1? -

In this example: 1 pixel in max pooling output captures information from 16 input pixels!

Example: applying max pooling again results in a single pixel that captures info from entire input image!

1 3 1 3

Basic Building Block of CNN's

Handwritten Digit Recognition

Handwritten Digit Recognition

Handwritten Digit Recognition

CNN Demo

CNN's

- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations
- Convolution filters are shift-invariant
- In terms of invariance to an object shifting within the input image, this is roughly achieved by pooling

Time series analysis with Recurrent Neural Networks (RNNs)

What we've seen so far are "feedforward" NNs

What we've seen so far are "feedforward" NNs

What if we had a video?

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with other neural net layers

Time series

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM, GRU

like a dense layer that has memory

LSTM layer

Recommendation: don't use SimpleRNN

LSTM layer

like a dense layer

that has memory

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with other neural net layers

Time series

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM, GRU

Recommendation: don't use SimpleRNN

Feedforward NN's: treat each video frame separately

RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM, GRU

Recommendation: don't use SimpleRNN

Time series

LSTM layer

lassif

like a dense layer that has memory

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)

Demo

- Neatly handles time series in which there is some sort of global structure, so memory helps
 - If time series doesn't have global structure, RNN performance might not be much better than 1D CNN
- An RNN layer by itself doesn't take advantage of image/text structure!
 - For images: combine with convolution layer(s)
 - For text: combine with embedding layer